skip to main content


Search for: All records

Creators/Authors contains: "Rastogi, Vaibhav"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. An emerging problem in trustworthy machine learning is to train models that pro- duce robust interpretations for their predictions. We take a step towards solving this problem through the lens of axiomatic attribution of neural networks. Our theory is grounded in the recent work, Integrated Gradients (IG) [STY17], in axiomatically attributing a neural network’s output change to its input change. We propose training objectives in classic robust optimization models to achieve robust IG attributions. Our objectives give principled generalizations of previous objectives designed for robust predictions, and they naturally degenerate to classic soft-margin training for one-layer neural networks. We also generalize previous theory and prove that the objectives for different robust optimization models are closely related. Experiments demonstrate the effectiveness of our method, and also point to intriguing problems which hint at the need for better optimization techniques or better neural network architectures for robust attribution training. 
    more » « less
  2. Application containers, such as those provided by Docker, have recently gained popularity as a solution for agile and seamless software deployment. These light-weight virtualization environments run applications that are packed together with their resources and configuration information, and thus can be deployed across various software platforms. Unfortunately, the ease with which containers can be created is oftentimes a double-edged sword, encouraging the packaging of logically distinct applications, and the inclusion of significant amount of unnecessary components, within a single container. These practices needlessly increase the container size - sometimes by orders of magnitude. They also decrease the overall security, as each included component - necessary or not - may bring in security issues of its own, and there is no isolation between multiple applications packaged within the same container image. We propose algorithms and a tool called Cimplifier, which address these concerns: given a container and simple user-defined constraints, our tool partitions it into simpler containers, which (i) are isolated from each other, only communicating as necessary, and (ii) only include enough resources to perform their functionality. Our evaluation on real-world containers demonstrates that Cimplifier preserves the original functionality, leads to reduction in image size of up to 95%, and processes even large containers in under thirty seconds. 
    more » « less